Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289611

RESUMO

Aortic valve stenosis has become the most common valvular disease in elderly patients. Several treatments are available such as surgical aortic valve replacement and transcatheter aortic valve implantation. To date, however, there is a need to discover alternative treatments that can delay the disease progression and, therefore, the implant of a prosthetic valve. In this regard, a decalcification procedure based on the use of ultrasonic waves could represent an innovative solution in transcatheter cardiovascular therapies. In this article, we describe an innovative transcatheter debridement device (TDD) that uses low-intensity ultrasound shock waves for calcium ablation from the native aortic valve and bioprosthetic valve. Mesenchymal stem cells were seeded onto pericardium-based scaffolds and committed into an osteogenic phenotype. After treatment with TDD, cell proliferation was analyzed, as well as lactate dehydrogenase release and cell morphology. The release of calcium and inflammation events were detected. The results confirmed that the TDD was able to induce a safe decalcification without any adverse inflammatory events.

2.
Front Cardiovasc Med ; 9: 850393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402526

RESUMO

The increasing incidence of calcific aortic valve disease necessitates the elaboration of new strategies to retard the progression of the pathology with an innovative solution. While the increasing diffusion of the transcatheter aortic valve replacements (TAVRs) allows a mini-invasive approach to aortic valve substitution as an alternative to conventional surgical replacement (SAVR) in an always larger patient population, TAVR implantation still has contraindications for young patients. In addition, it is liable to undergo calcification with the consequent necessity of re-intervention with conventional valve surgery or repeated implantation in the so-called TAVR-in-TAVR procedure. Inspired by applications for non-cardiac pathologies or for vascular decalcification before stenting (i.e., coronary lithotripsy), in the present study, we show the feasibility of human valve treatment with a mini-invasive device tailored to deliver shockwaves to the calcific leaflets. We provide evidence of efficient calcium deposit ruptures in human calcified leaflets treated ex vivo and the safety of the treatment in pigs. The use of this device could be helpful to perform shockwaves valvuloplasty as an option to retard TAVR/SAVR, or as a pretreatment to facilitate prosthesis implantation and minimize the occurrence of paravalvular leak.

3.
Life Sci ; 152: 44-51, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26979772

RESUMO

AIM: Pulsed electromagnetic field (PEMF) therapy has been documented to be an effective, non-invasive, safe treatment method for a variety of clinical conditions, especially in settings of recalcitrant healing. The underlying mechanisms on the different biological components of tissue regeneration are still to be elucidated. The aim of the present study was to characterize the effects of extremely low frequency (ELF)-PEMFs on commitment of mesenchymal stem cell (MSCs) culture system, through the determination of gene expression pattern and cellular morphology. MAIN METHODS: Human MSCs derived from adipose tissue (ADSCs) were cultured in presence of adipogenic, osteogenic, neural, or glial differentiative medium and basal medium, then exposed to ELF-PEMFs daily stimulation for 21days. Control cultures were performed without ELF-PEMFs stimulation for all cell populations. Effects on commitment were evaluated after 21days of cultures. KEY FINDINGS: The results suggested ELF-PEMFs does not influence ADSCs commitment and does not promote adipogenic, osteogenic, neural or glial differentiation. However, ELF-PEMFs treatment on ADSCs cultured in osteogenic differentiative medium markedly increased osteogenesis. SIGNIFICANCE: We concluded that PEMFs affect the osteogenic differentiation of ADSCs only if they are pre-commitment and that this therapy can be an appropriate candidate for treatment of conditions requiring an acceleration of repairing process.


Assuntos
Diferenciação Celular/efeitos da radiação , Campos Eletromagnéticos , Células-Tronco Mesenquimais/efeitos da radiação , Osteogênese/efeitos da radiação , Tecido Adiposo/citologia , Adulto , Regeneração Óssea/efeitos da radiação , Meios de Cultura , Expressão Gênica/efeitos da radiação , Humanos , Metabolismo dos Lipídeos/efeitos da radiação , Pessoa de Meia-Idade , Neuroglia/efeitos da radiação , Neurônios/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...